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Abstract It is now recognized that genetic interactions

(epistasis) are important sources of the hidden genetic

variations and may play an important role in complex

diseases. Identifying genetic interactions not only helps to

explain part of the heritability of complex diseases, but also

provides the clue to understand the underlying pathogen-

esis of complex diseases. Advances in high-throughput

technologies enable simultaneous measurements of multi-

ple genomic features from the same samples on a genome-

wide scale, and different omics features are not acting in

isolation but interact/crosstalk at multiple (within and

across individual omics features) levels in complex net-

works. Therefore, genetic interaction needs to be accounted

for across different omics features, potentially allowing an

explanation of phenotype variation that single omics data

cannot capture. In this study, we propose an analysis

framework to detect the miRNA–mRNA interaction

enrichment by incorporating principal components analysis

and canonical correlation analysis. We demonstrate the

advantages of our method by applying to miRNA and

mRNA data on glioblastoma (GBM) generated by The

Cancer Genome Atlas project. The results show that there

are enrichments of the interactions between co-expressed

miRNAs and gene pathways which are associated with

GBM status. The biological functions of those identified

genes and miRNAs have been confirmed to be associated

with glioblastoma by independent studies. The proposed

approach provides new insights in the regulatory mecha-

nisms and an example for detecting interactions of multi-

omics data on complex diseases.

Keywords Interaction analysis � Multi-omics �
MicroRNAs � Glioblastoma

1 Introduction

The phenotypic variations of complex diseases are highly

complex due to its polygenic inheritance and environ-

mental influence. With high-throughput technologies,

omics data analyses, e.g. genome-wide association studies

(GWAS), have been carried out with notable success in

identifying genetic variants underlying complex diseases

and have tremendously improved our understanding of the

genetic mechanisms of many common complex diseases

(Burton et al. 2007). A primary interest in omics data

analyses was typically the identification of a set of SNPs

or genes that are marginally associated with a target

disease. An increasing number of researches have high-

lighted that gene interactions (epistasis) are important

sources of the hidden genetic variations for complex

diseases, which can be explained by joint effects of

multiple SNPs/genes but not by their main effects (Cor-

dell 2009; Kallberg et al. 2007; Nelson et al. 2001;

Ritchie et al. 2001; Wan et al. 2010). Identifying genetic

interactions not only helps to explain part of the herita-

bility of complex diseases, but also provides the clue to
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understand the underlying pathogenesis of complex dis-

eases and improves predictions of individual disease risk

in humans (Cordell 2009; Mackay 2014; Phillips 2008;

Visweswaran et al. 2009).

So far, most studies of gene interaction analyses focused

on single omics data such as GWASs and gene expression

data. Many statistical methods have been proposed for

detecting gene interactions (Cordell 2009; Mackay 2014),

including multifactor dimensionality reduction method

(Ritchie et al. 2001), PLINK (Purcell et al. 2007), Random

Jungle (Schwarz et al. 2010), BEAM (Zhang and Liu

2007), the combinatorial partitioning method (Nelson et al.

2001), the restricted partition method (Culverhouse et al.

2004), and the combinatorial searching method (Sha et al.

2006). Some of them made an exhaustive search for pair-

wise gene interactions at the genome-wide level; some

made a selection of a subset of SNPs or genes for inter-

action tests on the basis of existing biological knowledge or

statistical features; some adopt Machine-learning and data-

mining algorithms for data reduction and/or feature selec-

tion to reduce the computational burden in gene interaction

analysis (Mackay 2014).

Recently, advances in high-throughput technologies

enable simultaneous measurements of multiple genomic

features (e.g., RNA transcription data, genotype variation

data and proteomic data) from the same samples on a

genome-wide scale, and provide us a tremendous amount

of information to uncover a number of risk factors for

human complex diseases (Guan et al. 2010; Juran and

Lazaridis 2011). Importantly, different omics features are

not acting in isolation but interact/crosstalk at multiple

levels in complex networks. Gene interaction analysis of

individual omics studies fall short of providing a compre-

hensive view of the genetic factors and their functions in

the form of complex function/regulatory networks for

complex diseases (Farber and Lusis 2009). Therefore,

genetic interaction analysis needs to be accounted for

across different omics features by integrating multi-omics

data, powerfully and comprehensively identifying molec-

ular and genomic factors/mechanisms underlying the

pathogenesis of complex diseases (Farber 2010).

In this study, we propose an analysis framework to

detect the miRNA–mRNA interaction enrichment by

incorporating principal components analysis and canonical

correlation analysis, which are associated with the pheno-

types under study. It is well known that genes often

cooperate with each other to perform various cellular

functions and are organized into functional modules with

densely connected genes within gene pathways (Newman

2006). Similarly, miRNAs also show cooperative effects on

complex diseases (Chhabra et al. 2010; Feederle et al.

2011; Mavrakis et al. 2011). Thus, it is likely that there

exists the enrichment of miRNA–mRNA interactions

between co-expressed miRNAs and gene pathways. We

demonstrate the advantages of our method by applying to

miRNA and mRNA data on glioblastoma (GBM) generated

by The Cancer Genome Atlas (TCGA) project. The results

show that there are enrichments of the interactions between

co-expressed miRNAs and gene pathways which are

associated with GBM status and our method can provide

functional information about individual genes and miRNAs

to uncover the dysregulation of functional modules and

their mutual interactions. Our study may set an example for

detecting interactions of multi-omics data on complex

diseases.

2 Methods

In this study, we focus on samples in two classes (e.g., the

two subtypes of a disease). Suppose that in class k (k = 1

or 2) each sample consists of gene expression profile and

miRNA expression profile. MiRNA data and gene

expression data consist of X miRNAs and Z mRNAs,

respectively. Let Y (yi = k, i = 1, 2,…, n) be a vector of

the phenotypes for samples, where n is the number of

samples.

According to previous studies (Liu et al. 2012a; Zhang

et al. 2009), miRNA–mRNA interactions can be repre-

sented by the correlation differences of miRNA–mRNA

pairs between the two different classes. Thus, the goal of

our method is to identify the correlation differences of co-

expressed miRNAs and gene pathways between the two

classes. The procedure of the analysis we performed in this

study is shown in Fig. 1.

2.1 Method description

The details of our method are described in the following:

1. Preprocessing of miRNA and mRNA data. X miRNAs

are clustered based on the correlations to identify the

miRNAs with potential cooperative effects, and X miR-

NAs are assigned to p clusters. Similarly, Z mRNAs

are divided into corresponding gene pathways by prior

gene pathway knowledge (e.g. MSigDB database).

2. Principal component analysis (PCA). We adopt PCA to

reduce the dimensionality of each data set of variables

(e.g. miRNA clusters and mRNA pathways), respec-

tively. Let us take miRNA data as an example to

explain how PCA is performed. Let A 2 Rn�N be the

miRNA data set in cluster d (d = 1, 2,…, p), where

N is the number of miRNAs in cluster d. PCA is

applied to A, and the first m principal components

(PCs) are used as variables for further analysis. The

number of m is determined by the method used in
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Soneson et al. (2010). The same procedure is applied

to mRNA data in each gene pathway.

3. Identification of the correlation differences. The

canonical correlation analysis (CCA) is a way of

measuring the correlation between two multidimen-

sional variables. In this study, CCA is performed to

measure the correlation between clustered miRNAs

and gene pathways. For a given miRNA cluster d and a

pathway s, CCA is applied to these two data sets across

all samples; then we take the first pair of canonical

variables to calculate the correlation coefficient qkds

(k = 1 or 2) in each class. To test the null hypothesis

H0:

q1ds ¼ q2ds versus alternative hypothesis H1:

q1ds 6¼ q2ds, we adopt a metric developed by Fisher

(Fisher 1936):

Dds ¼
z1ds � z2ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n1�3

þ 1
n2�3

q ð1Þ

in which zkds (k = 1 or 2) is

zkds ¼ 0:5 loge
1 þ qkds

1 � qkds

�

�

�

�

�

�

�

�

ð2Þ

In Eq. (1) n1 and n2 are numbers of samples in class

1 and class 2, and the D value represents the

correlation coefficient difference of q1ds and q2ds,

which can be examined using a critical value of the

standard normal distribution (Kraemer 2006). Then,

we adjust the estimated significance level to account

for multiple hypotheses testing by q values (Storey

2002).

Additionally for a given pair of a miRNA cluster

and a gene pathway with significant interaction

effect, the correlation tests for individual microR-

NA–mRNA pairs in the miRNA cluster and gene

pathway are performed by Eqs. (1) and (2) to select

the individual miRNA–mRNA pairs with significant

interaction. For the identified miRNA–mRNA pairs

after multiple testing adjustment (Storey 2002), we

make the target prediction analysis by using ‘‘micr-

oRNA Target Filter’’ from Ingenuity Pathway

Analysis [IPA, (Ingenuity System)] and find the

dysregulation patterns of miRNA–mRNA or

mRNA–mRNA.

2.2 Data and gene pathway information

The GBM data used in this study are publicly available

from the website of The Cancer Genome Atlas (TCGA).

The patients used in this study include two subtypes of

GBM: Pro-Neural, Neural (Verhaak et al. 2010). We

performed a data preprocessing according to the fol-

lowing criteria: (1) select the individuals which have

both miRNA and mRNA data; (2) eliminate the outliers

using the method proposed by Filzmoser et al. (2008);

(3) to reduce the bias in clustering analysis by differ-

ential co-expressed miRNAs across different groups

(Bhattacharyya and Bandyopadhyay 2013; Chia and

Karuturi 2010), we chose the similar sample sizes for

Pro-Neural and Neural subtypes. Thus, the final data set

we used has 30 samples with 15 patients each in the

subtypes of Pro-Neural and Neural. Each included sam-

ple has miRNA (1,510 probes) and mRNA expression

data (22,277 probes). In addition, we gather publicly

available pathway information from a database: The

Molecular Signatures Database (MSigDB), in which

there are a total of 880 pathways.

3 Results

All the 1,510 probes in miRNA data are clustered based on

their correlations. The dendrogram is shown in Fig. 2. It

yields 13 clusters with a cut-off value at 0.850, and in

Table 1, the number of probes is shown for each cluster.

The correlation between each pair of miRNA cluster and

pathway in the two subtypes of GBM is calculated by the

proposed approach described above. Three pairs with

Fig. 1 The flow chart for the

data analysis procedure
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significant correlation difference between Pro-Neural and

Neural subtypes are shown in Table 2.

As shown in Table 2, we observe that in the subtype

Neural, the miRNA cluster 8 and gene pathway 773 show

little correlation with the correlation coefficient 0.117.

However, they are strongly correlated in the subtype of

Pro-Neural with the correlation coefficient 0.963. There is

a significant difference of correlation of the cluster 8 and

the gene pathway 773 between subtypes Pro-Neural and

Neural. This difference indicates that there are interactions

between some miRNAs and mRNAs across subtypes Pro-

Neural and Neural, and these interactions between miR-

NAs and mRNAs might imply that there exists change of

miRNA–mRNA regulation patterns between the two sub-

types. Similarly, other two miRNA Cluster-Gene Pathway

pairs show significant correlation differences across the

subtypes Pro-Neural and Neural.

It is noted that among the three pairs of miRNA clusters

and pathways in Table 2, miRNA cluster 1 is involved in

two pairs. It suggests that miRNAs in cluster 1 may play an

important role in miRNA–mRNA interaction effects in the

subtypes Pro-Neural and Neural. Moreover, there are many

overlap genes between the pathway 138 and 658. Thus, we

take the miRNA cluster 1 and pathway 138 (KEG-

G_LONG_TERM_DEPRESSION) as an example for fur-

ther identification of miRNA–mRNA pairs with interaction

effects. After multiple testing adjustments, 72 miRNA–

mRNA pairs are identified with interaction effects at false

discovery rate (FDR) B 0.05. These pairs include 13 genes

and 16 miRNAs.

From the view of gene functions, previous studies have

indicated that some of these 13 genes identified in our

analysis are related to glioma. For example, IGF1R is a

transmembrane tyrosine kinase that is frequently overex-

pressed by tumors. IGF1R has been shown to be abnor-

mally active in gliomas (Gammeltoft et al. 1988), and its

inhibition prevents tumor growth in preclinical models

(Kiaris et al. 2000). IGF1R expression in glioblastoma is

shown to elicit a host response leading to protection from

unmodified tumor cells (Bielen et al. 2011; Riedemann and

Macaulay 2006). The protein encoded by GNAS is a key

component of many signal transduction pathways. It is

reported that there is an association between GNAS

genotype and survival among patients suffering from GBM

(El Hindy et al. 2011). In addition, some miRNAs identi-

fied in our analysis have been found to be associated with

gliomas. For example, hsa-miR-218 plays a critical role in

the progression of many human cancers as a tumor sup-

pressor (Liu et al. 2012b). Hsa-miR-218 is involved in

preventing the invasiveness of glioma cells (Song et al.

2010). Hsa-miR-128 is a brain-enriched miRNA, and is

identified as a tumor suppressive miRNA that has been

shown to regulate neuronal differentiation, matura-

tion, and/or survival. Hsa-miR-128 can repress humanFig. 2 Clustering chart for all the 1,510 miRNA probes

Table 1 The number of miRNA probes in the 13 clusters

Cluster no. 1 2 3 4 5 6 7 8 9 10 11 12 13

No. of

probes

95 144 204 23 4 110 6 454 286 16 41 108 19

Table 2 A summary of miRNA cluster-gene pathway pairs with significant interaction effects

Pairs Correlation coefficient Correlation difference

(p value)

FDR

Pro-Neural Neural

Cluster 8 v.s. Gene Pathway 773 0.963 0.117 5.01E-06 0.024

Cluster 1 v.s. Gene Pathway 138 0.290 0.972 6.81E-06 0.024

Cluster 1 v.s. Gene Pathway 658 0.551 0.985 7.88E-06 0.024

Pathway 773: REACTOME_ETHANOL_OXIDATION; Pathway 138: KEGG_LONG_TERM_DEPRESSION; Pathway 658:

REACTOME_REGULATION_OF_INSULIN_SECRETION_BY_GLUCAGON_LIKE_PEPTIDE_1
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glioblastoma cell growth and invasiveness (Bielen et al.

2011; Papagiannakopoulos et al. 2012).

These miRNA–mRNA interactions indicate the change

of regulation pattern across the Pro-Neural and Neural

groups: (1) between miRNAs and mRNAs; (2) between

mRNAs and mRNAs. For the following analysis, we will

focus on hsa-miR-218 as an example to investigate the

change of regulation pattern. There are two genes, ITPR1

and CRH, which have interaction effects with hsa-miR-

218. For ITPR1, in the Pro-Neural group, there is no evi-

dence that the expression of gene ITPR1 is correlated to

hsa-miR-218, but in the Neural group, they show a very

strong correlation, with range from 0.820 to 0.899. Based

on target prediction analysis for hsa-miR-218 by ‘‘micr-

oRNA Target Filter’’ from ingenuity pathway analysis

(IPA), which contains the databases: TarBase, TargetScan,

and miRecords, it is found that ITPR1 is not the target gene

of hsa-miR-218. Meanwhile, it is known that miRNAs

usually result in translational repression of mRNAs. Thus,

one possibility is that there is a target gene of hsa-miR-218,

which results in the interaction between hsa-miR-218 and

ITPR1. By correlation analysis and target prediction ana-

lysis for hsa-miR-218, it is observed that GNAI3, as a

target gene of hsa-miR-218, shows the correlation differ-

ence with hsa-miR-218 between Pro-Neural and Neural

groups, and shows a strong negative correlation with

ITPR1, as shown in Table 3. The result implies that a

dysregulation of the hsa-miR-218-ITPR1 pair across the

Pro-Neural and Neural groups can be due to the dysregu-

lation of hsa-miR-218–GNAI3 pair. In addition, in miRNA

cluster 1, we also identify several miRNAs (e.g. hsa-miR-

128), for which GNAI3 is not their target gene. However,

there are also similar relationships as GNAI3 and ITPR1.

This is mainly due to strong correlations between these

miRNAs and hsa-miR-218, and they may carry out coop-

erative function in regulating mRNA expression. In this

study, we clustered the miRNAs with similar co-expression

profiles across all samples. For the identified miRNA

clusters which showed interaction effects with gene path-

ways, some miRNAs in the same clusters have been

reported to have co-expressed patterns. For example, in

miRNA cluster 1, hsa-mir-103,128 and 218, were identified

with co-expressed patterns (Sengupta and Bandyopadhyay

2011).

4 Discussion and conclusion

Interaction analysis of miRNA and mRNA data is helpful

to better understand how miRNAs regulate mRNA

expressions and how the regulation changes affect pheno-

types. However, it is a challenge to identify the miRNA–

mRNA interactions related to complex diseases due to the

high-dimensional data. For example, with 1,000 miRNAs

and 20,000 mRNAs, there will be 2.0 9 107 combinations

of miRNAs and mRNAs. Recently, some studies indicated

that miRNAs work in clusters to accomplish their function

throughout many biological processes (Leung et al. 2008).

MiRNAs located in the same cluster are usually co-regu-

lated and co-expressed (Tanzer and Stadler 2004, 2006). In

addition, it is well known that genes often cooperate with

each other to perform various cellular functions and are

organized into functional modules with densely connected

genes within gene pathways (Newman 2006). Thus, we

proposed a method to detect the enrichment of miRNA and

mRNA interactions between co-expressed miRNAs clus-

ters and gene pathways.

A major challenge in our analysis is the high dimensions

of the miRNAs and mRNAs in each miRNA cluster and

gene pathway. A natural solution would be to reduce the

dimensions. PCA is adopted for dimension reduction to

capture properties of miRNA and mRNA expressions. In

the GBM data analysis, we consider two PCs for each

miRNA cluster and each gene pathway, respectively,

according to Soneson et al. (2010). The first two PCs

averagely represented 68 % variation of the miRNA data

and 51 % variation of the mRNA data. The scree plots of

variance distribution of PCs (data not shown) become flat

from the third components, indicating that the rest of the

components mostly contain noise. It is noted that it is not

our intention to suggest that two PCs will be sufficient for

all practical data analysis. Rather, we intend to raise the

awareness of the extra information brought by PCs beyond

the first one or two. In practical data analysis, we suggest

that researchers explore different numbers of PCs, and

select the proper number based on the characteristics of

specific data set, such as the biological implications and

predictive power of the identified differential pathways.

The elapsed time for the computation is *16 s in the

described case, running on a computer with 64-bit

Table 3 The correlations of ITPR1and hsa-miR-218 with GNAI3 in Pro-Neural and Neural classes

ITPR1 hsa-miR-218

203710_at 211323_s_at 216944_s_at 201179_s_at 201180_s_at

GNAI3 201180_s_at Neural -0.749 -0.671 -0.696 -0.743 -0.766

Pro-Neural -0.744 -0.589 -0.727 -0.053 -0.065
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Windows 7, Intel (R) Core (TM) i7-2600K CPU @3.4-

GHz, and 8 GB RAM. The elapsed time may vary upon

different data sizes and computer conditions.

Applications on the real data suggest that, with the

proposed approach, we are able to identify the pairs of

miRNA clusters and gene pathways, which show interac-

tion effects enrichment related to GBM status. MAGIA2 (a

popular miRNA–mRNA integrated analysis tool) also

yields the similar results for the pathway 138 and the

miRNA cluster 1 as shown in Fig. 3. In Fig. 3b, c, it can be

seen that the correlation coefficients of hsa-miR-218 and

GNAI3 show a difference across the Pro-Neural and Neural

groups. In Fig. 3a, if using the data from both Pro-Neural

and Neural groups, the dysregulation between hsa-miR-218

and GNAI3 will not be observed. These results indicate

that there is dysregulation related to the trait under study,

between hsa-miR-218 and GNAI3. Meanwhile, our method

can give more information about regulation. For example,

our method identifies the interaction effect between hsa-

miR-218 and ITPR1. Although ITPR1 is not a target gene

of hsa-miR-218, it is observed that GNAI3, as a target gene

of hsa-miR-218, shows a high correlation with ITPR1. It is

possible that the interaction effect between hsa-miR-218

and ITPR1 pair across the Pro-Neural and Neural groups

can be due to the interaction effect between hsa-miR-218

and GNAI3. In addition, our method indicates the co-

expressed miRNAs which are associated with the trait

under study. So our method can give more regulation

information and clues of the complex regulation network.

In summary, the novelty of our method is that we

incorporate prior biological knowledge to detect the

miRNA–mRNA interactions, which indicate the existence

of dysregulation associated with phenotypes of interest. It

enables us to get an insight into the roles of causal miRNAs

and mRNAs in disease diagnosis and therapy development.

Additionally, our method provides a way of integrating

multi-omics data to delineate the knowledge of relevant

molecular pathways of disease pathogenesis.

Web sources

TCGA GBM data: http://tcga-data.nci.nih.gov/tcga/tcga

Home2.jsp.

MSigDB: http://www.broadinstitute.org/gsea/downloads.jsp.

IPA: http://www.ingenuity.com/products/ipa.
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